Energy Efficiency in Planning

Influencing Energy Efficiency at an Early Stage

Matthias Tuchschnid, Energy Management SBB

Energy Efficiency, the best fuel to move our trains!
BIGGEST INFLUENCE ON ENERGY EFFICIENCY IS AT EARLY STAGE OF STRATEGY AND PLANNING.

Impact of energy efficiency [MWh/Employee & a.]

- Strategy, long term production concepts (long-term (>10 years))
- Specification Procurement (midterm (3-10 years))
- Timetabling (short-midterm (days – 3 years))
- Operation (daily)

Define strategy

Planning

Producing
FOCUS OF WORKSHOP

How to influence today the railway of tomorrow?
Is energy management actively involved in the planning process?
What are the prioritized activities?
What are success stories?
What are favorable / obstructive factors?
What are typical time frames for planning process in your railway?
(network layout, basis production concept, number of trains, defined vehicles)
<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.30 - 14.35</td>
<td>Introduction</td>
</tr>
</tbody>
</table>
| 14.35 - 14.50 | **Part Ia: Input presentation GEN**
«Energy data analysis as a basis for prioritizing long-term energy efficiency measures» |
| 14.50 - 15.05 | **Part Ib: Input presentation SBB & ProRail**
«Influencing Energy Efficiency at early Stage» |
| 15.05 – 15.25 | **Part II: Group Work & Presentation**
Discussion in small groups of 4-5 participants made experiences and sharing the knowledge. |
| 15.25 – 15.55 | **Part III: Plenum**
Presentation of the findings of Part II in the plenum. Open discussion about the energy efficiency in Planning processes: What are favorable factors? Obstructive factors? What are transferable success stories? |
| 15.55 – 16.00 | **Summary and Closing** |
ENERGY EFFICIENCY IN PLANNING

ENERGY DATA ANALYSIS AS A BASIS FOR PRIORITIZING LONG-TERM ENERGY EFFICIENCY MEASURES

WESSEL SLUIS, GEN

Energy Efficiency, the best fuel to move our trains!
Energy Data Analysis
as a basis for prioritizing energy efficiency measures
27 Mei 2014

Michiel Dorresteijn
Nabi Abudaldah
Introduction GEN

- Founded in 1997, still under same independent ownership
- Knowledge company exclusively focusing on gas, power, heat and water
- From strategy to process improvement and detailed software implementation
- Geographical area covers primarily NWE
- Nearly 50 highly educated staff, all energy specialists
- HQs: Utrecht (NL) + local representatives in BE, DE, UK (FR in progress)
Outside Temperature

Traction energy shows a strong correlation with outside temperature, especially when working days and weekend days are separated.

Figure: Mean traction energy per 15-minute-interval for all grid connections against the outside temperature at meteostation De Bilt. Blue: working days Rood: weekend days
Daily pattern of temperature influences

The temperature dependency varies over the mean day:

Figure: the mean consumption per 15-minute-interval for all working days for all grid connections against the mean temperature for that interval.
Daily pattern of temperature influences

The temperature dependency varies over the mean day:

Figure: the found temperature dependencies over the mean working day
Dataset: exploration

Geographic distribution of grid connections in proportion with the yearly volume of the grid connection.

Figure: the geographic locations of the grid connections. A larger circle means a larger yearly volume.
Dependencies per cluster

Three separate clusters can be found statistically with different temperature dependencies:

Figure: per cluster the mean volume per 15-minute-interval on working days for all grid connections within that cluster against the temperature during that interval as measured at De Bilt.
Differences per cluster

The identified clusters seem to be related to the ‘opstelplaatsen’

Figure: the total yearly volume per grid connection in proportion with the size of the symbol. The color corresponds with the clusters indicated on the previous slide.
Other explorations

- Dependencies vary per geographical region
- Dependencies vary per month and season

It can be concluded that energy data contain a treasure of information that can help to identify the energy efficiency measures that will have the highest impact.
Influencing energy efficiency at an early stage

Paul van der Voort
Programm Manager Innovation, ProRail

Energy Efficiency, the best fuel to move our trains!
Speed

A

B

1. Timetable
2. Disturbances
3. 0%

100%
Energy Efficiency in Planning

Influencing Energy Efficiency at an Early Stage

Matthias Tuchscheid, Energy Management SBB

Energy Efficiency, the best fuel to move our trains!
Influencing factors on energy consumption

Total energy consumption from pantograph (main line and commuter traffic, freight transportation)

Consumption of traction + Consumption of HVAC for comfort

Operating performance [gross-tkm] x

Specific consumption of traction [kWh / gross-tkm]

- Air resistance (~ v^2)
- Rolling resistance
- Losses in traction chain + auxiliaries
- Losses of hydraulic brake

Consumption of HVAC [MWh per veh. & year]

No. x

- Reduction of gross-tkm e.g. Use of optimized size of train to demand, reduce empty runs.
- Lowering speed
- Lighter vehicles in kg per seat
- Choose the most efficient vehicles
- Harmonize v-profile e.g. less acceleration and braking
- Reduce fleet
- Use more efficient vehicles

UIC Energy Efficiency Days 2014
Starting Points for Influencing the Energy Efficiency at Early Stage

Total energy consumption from pantograph (main line and commuter traffic, freight transportation)

Consumption of traction

- Operating performance [gross-tkm]
 - Reduction of gross-tkm e.g. Use of optimized size of train to demand, reduce empty runs.

- Specific consumption of traction [kWh / gross-tkm]
 - Air resistance (~ v^2)
 - Rolling resistance
 - Losses in traction chain + auxiliaries
 - Losses of hydraulic brake
 - Lighter vehicles in kg per seat
 - Choose the most efficient vehicles
 - Harmonize v-profile e.g. less acceleration and braking

- Consumption of HVAC for comfort
 - No.
 - Consumption HVAC [MWh per veh. & year]

- Lowering speed
- Choose the most efficient vehicles
- Harmonize v-profile e.g. less acceleration and braking
- Reduce fleet
- Use more efficient vehicles

UIC Energy Efficiency Days 2014
REDUCTION OF GROSS-TKM

e.g. Optimised train sizes.
Adjusting train size to demand, by using smaller trains for regional traffic on long distance traffic routes at off-peak hours.

Optimising routes in network.
e.g. avoiding parallel routes with low load factor in off-peak times (e.g. parallel IC and Regio)
LOWERING SPEED

Reducing speed reductions at infrastructure

longer running times (1 minute) to reduce peek speed peaks

stops on request

Shorter stopping times in train station in off-peak hours.
e.g. Priorities in planning.
Currently, the priorities of planning are as follows: First comes the main lines, then commuter traffic and third freight traffic. This leads to several planned and unplanned stopps of heavy freight traffic (>1000t!) with energy losses, because a light commuter train has a higher priority.

These stops of heavy freight trains can be reduced, if the traffic is prioritized according to the average speed.
PART II: DISCUSSION IN GROUPS (20’)

Discuss in a group of 4-5 participants the following questions and save your results on a flipchart.
1. Is energy management actively involved in the planning process?
2. What are success stories?
3. What are favorable / obstructive factors?
4. What are typical time frames for planning process in your railway? (network layout, basis production concept, number of trains, defined vehicles)
PART III: PLENUM (35’)

Energy Efficiency, the best fuel to move our trains!
Results of group 1

1. Pacing takes en-eff into acct.

 NMBS/SNCB: it is the last factor taken into account, in the end not an item in decision to drive trains.
 - Fox
 - Material
 - Personnel
 - Energy

 NS: it is taken into account, slack (slack distribution) priority to stability, optimisation also based on energy.

2. Joint goals: ProRail (INRRA), NS (TDC) for improved meets
 - on-the-interface
 - NMBS: balance (content) speed & frequency, # of stops, etc
 "It is on the agenda now!"

3. Conservation @ planning dept, culture.
 - Commercial & political constraints
 - Long lead times for infra changes, rolling stock.
 - Limited flexibility in design pieces (complexity added).
 - Show positive impact of eco driving 6% on punct, safety, flow, capacity

4. 2 year @ NS

5. 5 years at NMBS if info needed
Results of group 2&3

1. **yes**

2. (in progress)

3. Research started
 - awareness of energy efficiency
 - in favour
 - energy prices \(\uparrow \)
 - "Go" new ways
 - Data available
 - Legislation, Frame
 - "Hand in hand" with
 - obstructive
 - Way of thinking traditional, punctuality capacity, running times, Modes

4. Timetable is done twice a year, strategic planning requires 2-5 years